超音波、動脈硬化、心電図などを統合一元化できます

超音波、動脈硬化、心電図などを統合一元化できます

ワイヤレス 動脈硬化計測

2017年7月26日水曜日

Shimmer Sensing

A wearable chemical–electrophysiological hybrid biosensing system for real-time health and fitness monitoring Somayeh Imani , Amay J. Bandodkar , A. M. Vinu Mohan , Rajan Kumar , Shengfei Yu , Joseph Wang  & Patrick P. Mercie Abstract Flexible, wearable sensing devices can yield important information about the underlying physiology of a human subject for applications in real-time health and fitness monitoring. Despite significant progress in the fabrication of flexible biosensors that naturally comply with the epidermis, most designs measure only a small number of physical or electrophysiological parameters, and neglect the rich chemical information available from biomarkers. Here, we introduce a skin-worn wearable hybrid sensing system that offers simultaneous real-time monitoring of a biochemical (lactate) and an electrophysiological signal (electrocardiogram), for more comprehensive fitness monitoring than from physical or electrophysiological sensors alone. The two sensing modalities, comprising a three-electrode amperometric lactate biosensor and a bipolar electrocardiogram sensor, are co-fabricated on a flexible substrate and mounted on the skin. Human experiments reveal that physiochemistry and electrophysiology can be measured simultaneously with negligible cross-talk, enabling a new class of hybrid sensing devices. Introduction Wearable sensors present an exciting opportunity to measure human physiology in a continuous, real-time and non-invasive manner1,2. Recent advances in hybrid fabrication techniques have enabled the design of wearable sensing devices in thin, conformal form factors that naturally comply with the smooth curvilinear geometry of human skin, thereby enabling intimate contact necessary for robust physiological measurements1,3,4. Development of such epidermal electronic sensors has enabled devices that can monitor respiration rate5,6,7, heart rate8,9, electrocardiograms4,10,11,12, blood oxygenation13, skin temperature14,15, bodily motion16,17,18,19,20, brain activity21,22,23 and blood pressure24,25. To date, most systems have targeted only a single measurement at a time, and most such sensors measure only physical and electrophysiological parameters, significantly limiting monitoring and diagnostic opportunities. For example, the human body undergoes complex physiological changes during physical activities such as exercise26,27, and monitoring the physiologic effect of physical activity can be important for a wide variety of subjects ranging from athletes to the elderly28,29,30. However, current wearable devices that only measure heart rate, motion and electrocardiogram provide an incomplete picture of the complex physiological changes taking place. As a result, further progress in the area of wearable sensors must include new, relevant sensing modalities, and must integrate these different modalities into a single platform for continuous, simultaneous sensing of multiple parameters relevant to a wide range of conditions, diseases, health and performance states. Inclusion of chemical measurements can provide extremely useful insights not available from physical or electrophysiological sensors31. Chemical information can be conventionally acquired via clinical labs or point-of-care devices32,33,34; unfortunately, such approaches do not support continuous, real-time measurements, therefore limiting their utility to applications where stationary, infrequent tests are sufficient. While recent work, including our own, has demonstrated that chemicals such as electrolytes and metabolites can be measured continuously using epidermal electronics on the skin35,36,37,38, or through non-invasive monitoring of other body fluids38,39,40, these devices measure only a single parameter at once, and are not integrated with other sensing modalities. Recently, Gao et al.41 demonstrated a wearable patch that can simultaneously track levels of metabolites and electrolytes in human sweat. However, electrophysiology sensors were not included, and such multimodal sensor fusion is crucial to obtain a more comprehensive knowledge about a wearer’s well-being.

0 件のコメント:

コメントを投稿